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An instability mechanism, leading to the generation of cross-waves in a closed 
channel, was examined recently by Garrett (1970). His theory is not applicable 
to long channels where the wavemaker produces a primary field which is 
a progressive wave train. In  such cases, the heaving of the mean surface, of 
considerable significance in the instability mechanism, is confined to the non- 
propagating field near the wavemaker. Here the theory of resonant interactions 
is extended to describe the energy transfer from this forced localized field to 
the cross-wave field. There are close analogies between the present results and 
Garrett’s, although the resonant bandwidth estimated here is an order of 
magnitude smaller. The theory indicates that nonlinear effects may control the 
decay of cross-waves down the channel. 

1. Introduction 
When a wavemaker operates at one end of a channel, whose width is rather 

larger than the wavelength of the primary waves being generated, waves may 
appear with their crests a t  right angles to the wavemaker. These waves, whose 
frequency is generally half that of the wavemaker, are known as cross-waves. 
A brief historical account may be found in a recent paper by Garrett (1970), 
who developed a theory for the generation of cross-waves in a tank with a rigid 
wall opposite the wavemaker. It is an intriguing feature of Garrett’s analysis 
that the only features of the basic flow which contribute to the instability are 
the mean surface displacement and the mean of the second derivative of the 
velocity potential at the surface. Moreover, both these quantities can be related 
to the performance of the wavemaker by global conservation considerations 
for the basic flow. Once these identifications have been made the basic flow 
plays no further role in the theory. It is irrelevant whether the basic flow has 
standing waves or is merely a non-periodic flow with waves travelling back and 
forth along the channel. The global identifications, however, assume the 
dominance of the basic flow and so, by its very nature, the theory cannot be 
expected to provide answers about the manner in which the basic flow is modified 
by the occurrence of cross-waves. Presumably such answers can only be found 
in the study of the detailed dynamics of the fluid, a dauntingly difficult task. 

Garrett shows that the energy of the cross-wave field can be supplied by the 

t This work was done while the author was on leave from the Department of Mathe- 
matics, University of Western Australia. 
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work done by the wavemaker against the depth-independent second-order 
pressure under a standing wave. This would still apply in an open channel, as 
Garrett observes, but a satisfactory explanation of the instability requires the 
demonstration that the phase relationships are appropriate to enable the above 
energy transfer to occur. Because the basic details of the fluid motion are irrelevant 
in Garrett’s calculations it might be thought that the phase relationships for the 
open channel could be obtained from his analysis. There are two difficulties 
associated with this suggestion, and these are partially concealed in the mathe- 
matical forms he obtains in terms of variables rendered non-dimensional with 
respect to the length of the channel. The first difficulty is that the two mean 
quantities tend to zero, for a given wavemaker motion, as the channel length 
tends to infinity. This implies that the resonant bandwidth and the growth 
rate tend to zero, and the instability disappears. If one invokes a dissipative 
mechanism to limit the channel length, as Garrett does in a different context, 
the decay rate due to dissipation should also be included and whether or not 
there is an instability then becomes uncertain. Second, even for long channels 
with negligible dissipation, Garrett’s analysis becomes inappropriate since it is 
based on an independent discrete-mode analysis. For long enough channels, the 
lower harmonics of the Fourier decomposition along the channel will still be 
long waves, and they too are likely to be involved in the instability. It is the 
aim of this paper to extend Garrett’s analysis to overcome these two difficulties 
for the case where the channel length is effectively infinite. 

For a monochromatic progressive wave train in the absence of a wavemaker, 
the author has been unable to find a ‘resonant interaction’ which transfers 
energy from a progressive wave to a standing cross-wave. Any such interaction 
must involve a receptor for the momentum flux of the progressive wave train, 
which cannot be accepted by either of the travelling modes contributing to the 
cross-wave field. Thus a four-mode interaction a t  least would be involved, and 
if the half-frequency result is used as a guide far too many restrictions appear. 
Even if such an interaction does exist theoretically, it  must be of such high order 
that its practical occurrence is rendered most unlikely by dissipative effects. 
It may be relevant to note that cross-waves do not appear to have been observed 
in naturally generated wave systems. Altogether this suggests that, to account 
for the origin of cross-waves, one should be more concerned with the field close to 
the wavemaker than with the progressive wave train. This near field admits 
no simple analytic description, but its Fourier transform can be obtained. As 
Garrett’s theory is equivalent to this transform containing a &function term 
a t  zero wavenumber, it is natural to ask whether a continuous spectrum over 
a band in which the wavenumbers are small can drive a similar instability. It 
will be shown that this can happen. 

Instability calculations, based on resonant-interaction theory, normally in- 
volve discrete-mode analyses. Thus the disturbance is taken as a monochromatic 
wave and its growth rate calculated. However, in a case where only a narrow 
band of the spectrum of the driving term is expected to be involved, one must 
anticipate that a discrete-mode representation of the disturbance is also in- 
appropriate, and some modification of the usual calculational procedures will be 
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necessary. A pattern of calculation is developed at first for a simple model equa- 
tion where the algebraic difficulties do not obscure the essentials. This serves 
as a guide as to how to carry out the full calculations in such a way as to render 
the algebra possible. 

The basic results obtained are very similar in form to those obtained by 
Garrett. The main differences lie in the scales on which the effects occur. Thus 
if 6 is the small parameter measuring the amplitude of the waves generated, 
then the bandwidth of frequencies for which cross-waves will be observed is 
reduced from O(E)  to 0(e2),  and the growth rate is correspondingly reduced. This 
implies that, for a given level of dissipation, larger motions will be required in 
order to generate cross-waves in a longer channel. However, during the initial 
stages, where the theory applies, there is a variation in the amplitude of the 
cross-waves along the channel. Garrett's result that the length scale of such 
variations is infinite is modified so that the length scale becomes of O(e-l), 
provided that this is not larger than the scale produced by viscous decay. There 
is also a close analogy with Garrett's condition for the reduction in the generation 
of cross-waves but his heuristically introduced length parameter doesnot appear. 
The theory does not clarify the questions concerning the manner in which the 
basic flow is modified by the appearance of cross-waves. Transfer of energy from 
the basic flow field will affect the phase of the pressure on the wavemaker, and 
hence may be expected to modify the energy and momentum fed into the 
travelling-wave mode but any analytic calculation of such effects appears 
improbable. 

2. Basic equations 
Consider a wavemaker operating a t  one end of a uniform horizontal channel 

of breadth b in which the undisturbed depth of liquid is d. If the angular frequency 
of the periodic motion of the wavemaker is w and g is the acceleration due to 
gravity, take w-l as the unit of time, g w 2  as the unit of length and gw-l as the 
unit of velocity. Take rectangular Cartesian axes Oxyz with the x axis along the 
channel, with origin. related to the central position of the wavemaker, and the 
z axis vertically upward with its origin at the undisturbed liquid surface. In  
these co-ordinates, and with the above choice of units, let $(x, y, x ,  t )  be the 
velocity potential, Z(z, y, t )  the vertical co-ordinate of the surface and d ' ( z )  sin t 
the x co-ordinate of the wavemaker. The flow is assumed to be inviscid and 
irrotational, so that the basic equation governing the flow is 

V2$ = 0,  

to be satisfied everywhere in the fluid. The associated boundary conditions are 
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and on the free surface z = Z(x,  y, t )  

$2 = 2, + 4x2, + $YZV 
$t+z+&{$:+@+$:} = 0, 

together with a radiation condition at x = co. In  the above 

= m g / ( b d ) ,  p = d d / g .  

This system has as its solution a velocity potential $ and a surface displace- 
ment 7, both of which are independent of y. Consider now an infinitesimal dis- 
turbance of the basic flow in the lowest cross-wave mode. Results for higher 
cross-wave modes may be inferred directly from the subsequent analysis by 
replacing a by na everywhere except in the definition in terms of physical 
quantities. It is assumed that second-order quantities in the cross-wave amplitude 
are negligible, so that the resulting theory will be restricted to the discussion of 
the onset of the instability. The disturbed velocity potential takes the form 

$(x, 2 ,  t )  + m ( x ,  2 ,  t )  cos ay, 

z = r (x ,  t )  + s g x ,  t )  cos ay. 

and the equation to the free surface the form 

The equation satisfied by the cross-wave field is 

a,, + - a w  = 0 

and the boundary conditions are 

@ , = O  on z = - / 3 ,  

@, = d " ( z )  @,,sint on the wavemaker 

and the free-surface conditions 

@ Z + $ S Z C  = Ct+$xCx+@x7,, ( l a )  

@,+$tz5+$,@,+#,@,,+5 = 0 fib) 

on the surface z = y(x, t )  of the basic flow, 
So far no use has been made of the smallness of e, a measure of the wave 

amplitude, and the boundary conditions (1) may be simplified by replacing $ 
and 7 by their approximations in powers of c .  For much of the analysis terms 
which are of O(c2)  may be ignored, and such approximations will now be made. 
Later it will become necessary to return to equations (1) to check on the relative 
importance of the terms neglected. The appropriate first-order approximations 
to equations ( 1 )  are 

@2 + @227 + $226 = Ct + 5% Q + @'ZTz, 

%+ @ t S V  + $&+ A@, + $S@S + 6 = 0, 

P a )  

( 2 b )  

where all derivatives of qi and @ are to be evaluated on z = 0. In  these equations 
$ and @ should be interpreted as the first-order description of these quantities 
rather than the exact descriptions. The first-order field consists of a uniform 
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wave train, generated at  the wavemaker and travelling down the channel, to- 
gether with a forced, periodic, non-propagating field near the wavemaker. 
For the remainder of this section it will be assumed that the instability mechanism 
producing cross-waves is associated with the pulsing flow near the wavemaker, 
€or reasons which have been discussed in the introduction. Actually this is not 
quite true, but is sufficiently close to the truth to form a basis for a preliminary 
investigation. Thus the periodic-wave-train part of the basic flow solution will 
be ignored, and it will be left to an a posteriori verification to show that this is 
a consistent approximation procedure. Such a method of investigation may cause 
one to miss certain forms of instability but is a valid means of investigating 
a given style of mechanism. In  the present context the assumption appears to 
be the natural generalization of Garrett’s organization of his calculations, which 
was based on the presumption that it is essentially the heaving of the mean 
surface, rather than the standing waves, which feeds the cross-waves. For the 
closed channel the agreement with experiment is most satisfactory. 

Thus in equations ( 2 )  $ and 7 may be considered as being quite complicated 
functions of x times cost. However, there is a not too unreasonable expression 
for the Fourier transforms of these functions of x. A conceptual scheme €or 
solving equations (2) is to undertake a perturbation expansion in powers of E ,  

and if such a procedure were followed and the equations for the first two orders 
were combined, there would result, after the elimination of 7, an equation of the 
form 

@,,+ QS = cXa iL i (@)Ni ($ )  +O(c2), 

where the ai are constants and Li and Mi are linear operators. The fact that $ is 
really only accessible through its Fourier transform, and, moreover, the fact 
that Fourier methods are the most tractable means of handling the presence of 
the 2 derivative which occurs, indicates that one should work with the Fourier 
transform of (3). This leads one to consider an equation of the form 

(3) 
i 

where Q ( k )  is the angular frequency of a free cross-wave with wavenumber 
component k in the direction of the channel and denotes Fourier transforms. 
The calculational procedure to be adopted is rather long and involved, and 
raises questions as to the validity of using this approximate equation. Moreover, 
the discussion of such a differential-integral equation is somewhat novel. Thus 
the methods to be adopted are considered in the first instance for a simple model 
equation suggested by the above. The experience gained with this simpler equa- 
tion will serve as a valuable guide for dealing with the more complicated system. 

3. Model calculation 
Consider the differential-integral equation 

m 
utt + Q2u = B cos t [ F(k,  k’) u(t, k’) dk‘, (4) 

J --oo 
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where F is a given smooth function of its arguments, and it is desired to in- 
vestigate whether, for large times, the behaviour of solutions is significantly 
affected by the small term on the right-hand side. First, a simple perturbation 
expansion 

m 

u = €iUi(t, k) 
i = O  

is tried, and a representative first approximation is 

uo = a(k )  cos Q ( k )  t .  

The corresponding second approximation satisfies 

al 

Ultt + fz%, = costJ F ( k ,  k’) a(k‘) COS Q‘tdk’, 
--m 

where fz‘ denotes Q(k’). A particular integral for u, is 

m 
~ - 1  sin ~ ( t  - s) cos S j  P ( ~ c ,  a ( ~ )  cos ~ ’ s  d ~ ’  ds. 

One may argue heuristically that the formal perturbation expansion should give 
a useful description of solutions provided that eul remains sniall in comparison 
with uo. It may be seen that this may not always be so for large values oft. It seems 
reasonable to assume that the contribution from small or moderate values of s 
does not invalidate the expansion. Thus, in any examination for growth of the 
particular integral for large time, it suffices to expand the inner integral for large 
values of s. If the initial disturbance is not highly structured the initial spectrum 
a(k’ )  will also be a smooth function, and then the inner integral will be entirely 
dominated by the contributions from the neighbourhoods of any points of 
stationary phase. For the dispersion relation 

1: --m 

Q(k’) = {(az+E’2)4tanh I(a2+k’2)*/31}3 ( 5 )  

for cross-waves on water, there is only one point of stationary phase, corre- 
sponding to I%’ = 0. Then if one writes 

Qo = Q(0) = (atanhap)*, (6) 

the only way that u1 may be so large as to invalidate, automatically, the perturba- 
tion scheme is for 

J:s-* sin Q(~c) (t - s) cos s cos ~ , s  ds 

to become large with t .  In  general the integrand is oscillatory, and then the 
Riemann-Lebesque lemma guarantees that the integral is not large. However, 
there are certain values of k a t  which the integrand ceases to be an oscillatory 
function, and then the integral is of O(t4) for large values of t .  An elementary 
argument using the trigonometric addition formulae shows that the critical values 
of k are such that one of the combinations t(Q & 1 & Q,} is not large when t is large. 
There are a number of values k,, zeros of one of the four combinations {Q & 1 & Q,}, 
such that in a narrow band of wavenumbers about them the first correction eul 
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will grow in time to exceed uo in order of magnitude. A typical such k,, satisfying 

{ (a2+k~)4 tanhI (a2+k~)gp l )~  = 1 + Iatanhc@I+, 

exists for all values of a and p. As the group velocity does not vanish a t  such a k,, 
the width of the band of wavenumbers around k, in which the contribution to u1 
will grow with time will be of O(t-1). Of course, this estimate, based on a regular 
perturbation procedure, ceases to be justified once eul is comparable with u,, 
so that it is no longer valid when et4 is not small. The ideas underlying the method 
of matched asymptotic expansions (e.g. Cole 1968) suggest that, on a time scale 
of 0(c2) in a wavenumber band of width O(e2) ,  u, may cease to be a very good 
approximation to u. However, the present differential-integral equation displays 
somewhat unusual properties in comparison with differential equations where 
these ideas have been so effective. For, a modification to uo in such a narrow 
bandwidth will produce an O(e3) change on the right-hand side of (4), and this 
cannot be expected to modify the determination of uo on a time scale of O(C-~). 
Thus there seems reason to believe that when eul becomes comparable with u,, 
the estimate for u1 remains appropriate. If this is so, the bandwidth will con- 
tinue to shrink as t-l, while eu1 will grow as et* and its contribution to the right- 
hand side of (4) will decay as et-4. Such a contribution would not seem to disturb 
the usefulness of a perturbation scheme. Furthermore, in complete contrast to 
the usual pattern which occurs in discrete model analysis, there is no reinforce- 
ment of the growth since the growing term is proportional to a(0) rather than 
a(k,), nor is there any growth at k = 0 due to a(k,). How one could compute 
the large-time behaviour of a ( k )  near k = k, is not clear to the author. There may 
be a higher order closure which permits the limitation or modification of this 
growth, or the growth indicated by u1 may continue until limited by some dis- 
sipative mechanism. But whichever is the case is not important, for the earlier 
argument shows that uo will not be affected on a time scale of O(e2).  Furthermore, 
it  must be remembered that u is a Fourier transform of a physical variable, so 
that even unit order changes of u over a wavenumber band of O(e2) will result 
in very small changes in the corresponding physical variable. It therefore appears 
justified to believe that such cases do not indicate a real instability with a growth 
rate of O(e2).  

An examination of the various possibilities reveals that there is only one way 
in which the resonance conditions may be satisfied and also not be ruled out on 
the above grounds. This happens when the combination 

{ ( a 2 + k 2 ) ) t a n h I ( a 2 + k 2 ) ~ P l ~  = 1 -  latanha/?I* 

leads to the root k = 0. Then the pattern is different in two significant ways. First, 
the group velocity vanishes, so that the Riemann-Lebesque lemma cannot be 
invoked for k2t not large, and the bandwidth affected is increased to O(t-*). 
Thus the contribution of eul to the integral in (4) will not decay in time. More- 
over, it  will occur in that part of the range of integration which contributes 
a growing term to ul, and hence it is continually reinforcing its own changes. 
Thus it appears that this case provides the opportunity for a parametric resonance 
of the type which gave Garrett his instability for the case when q5 had a discrete 
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spectrum. In particular, one may note that this combination, with k = 0, leads 
to the condition Q, = &, which is the observed frequency for cross-waves. It 
also corresponds to Garrett’s analysis, in which it is the x-independent mode of 
the basic flow which drives the instability. However, the fact that there is a wave 
band involved indicates that there would be a slow x variation in the cross-wave 
field. 

The close analogy with Garrett’s analysis is comforting, and suggests that 
a further examination of the long-wave band is justified. The simple perturbation 
analysis is not valid once et* is not small, and the usual heuristic arguments 
suggest looking for a solution in the small-wavenumber band in the form U(t ,  7, K ) ,  

where r = e2t and K = c-lk. There are certain subtleties about the method of 
approximation which call for comment. If an instability were to occur with an 
exponential growth rate of O($) in the long-wave band, it would not be true 
that, for wavenumbers outside the scaled range, the changes in the value of 
u(k, t )  are necessarily unimportant. Equation (4) implies that an exponential 
growth in any wavenumber range is reflected throughout the whole spectrum. 
A bandwidth of O(B)  for resonance implies, however, that it  will produce a change 
in u with the same exponential growth rate, but will have a small factor of O(s2) 
for k other than small. The inclusion of such a small exponential term in the 
other parts of the spectrum of u would affect only the s3 term in the discussion of 
the determination of u in the small-wavenumber band. It thus follows that the 
growth, ifany, of U(t ,  r ,  K )  ona time scale of O ( B - ~ )  may bediscussedindependently 
of the behaviour of u in other parts of the spectrum. 

Parametric resonance phenomena will be excited not only when the condition 
Q, = Q is satisfied exactly, but also for values of the parameters which lead to 
this condition being satisfied closely enough. Experience suggests that Q, can 
differ from Q by a quantity of the same order as the growth rate which may be 
involved, and parametric resonance still occur. Thus one introduces a parameter 
A, defined by 

a tanhap  = Qg = $+As2, 

and seeks a range of values of A, expected to be of unit order, for which U will 
grow in time. A wrong guess for this order could be corrected as it became apparent 
in subsequent analysis, but in fact the guess proves to be correct. Then for the 
long-wave band a suitable approximation for Q2 is given by 

(k2+a2)6 tanh 1(k2+a2)JpI = ~ + A B ~ + ~ B ~ K ~ + ~ ( E ~ ) ,  

and the parameter y, so defined, is positive since z tanh z is a strictly increasing 
function of z for positive values of x .  Thus (4) may be arranged in the form 

m 

7&+ ($ + h s 2 + y ~ 2 ~ 2 )  U +  2e2?&, = s2Fo / u(t,r, K ’ )  d ~ ’  cos t +R(t, r, k,  B ) ,  (7)  
J -m  

where Po denotes F(0 ,O)  and R denotes terms which are expected not to con- 
tribute to changes of U of unit order on a time scale of O(@) and hence may be 
ignored in subsequent discussion. 
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A standard argument based on the method of multiple scales (Cole 1968) may 
now be applied. Consideration of the leading approximation to (7) yields 

U, = V(T,  K )  cos i t  + W(T,  K )  sin +t, (8) 

and a second approximation is now sought. For general functions V and W the 
second approximation will not be a bounded function of the variable t ,  but this 
difficulty may be avoided by requiring that 

where these equations define X and Y .  The argument leading to these differential- 
integral equations is almost identical with a multi-scaling discussion of the 
Mathieu equation. Equations (9) may be solved by treatkg X and Y as known 
functions and solving the resultant differential equations. Thus it can be shown 
that 

~ ( 7 ,  K )  = /: { ~ ’ ( s )  6-1 + ~ ( s ) )  sin - s) cis + V ( O ,  K ) ,  (10a) 

W(7, K )  = so’{ Y’(s) 6-1 - X ( s ) )  sin 8(7 - s) ds + W(0, K ) ,  ( l o b )  

where 

If these results are now integrated with respect to K and the definitions (9) of 
X and Y are used, it is easy to show that 

6 = h + yK2.  

and 

where the kernels are given by 

K,(s) = ( A  + y~2)-1 sin ( A  + y ~ ~ )  s d~ s: 
and ~ , ( s )  = Smsin(A+yKz)sd m 

= (r/y)* s-4 sin (As + $77). 

The second integral is to be found on p. 397 of Gradshteyn & Ryzhik (1965) and 
the first may be found by an appropriate integration of the cosine integral 
corresponding to the second. The integral equations (1 1) are of Volterra form, 
and the application of a Laplace transform is clearly indicated. If  a bar is used 
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to denote the result of a Laplace transformation and p is the-transform variable, 
then the integral equations reduce to 

- _  X{ I + +FOE2} - +Fop& Y = x o / p ,  

- 2  IF OP R 1 F+{I-+FoEz}T = Y,/p. 

The transforms El and E2 can be obtained in terms of the known transforms 
(ErdBlyi et al. 1954) 

s-t sin s~ -+ +ir(g) [ ( p  + ihl-3 - ( p  - i4-41, 

s-:cossh -+ +r(+) [ ( p + i ~ ) - t + ( ~ - i ~ ) - t ] .  

These transforms are free of singularities in the right half of the complex-p plane 
and hence any solutions of the integral equations (1 1) which grow exponentially 
with r must be associated with zeros of the transfer function which lie in the 
right half plane. The equations for X and 7 are singular if 

0 = I - &Fi (E$ +pzET) 
= I - i ~ ; ( n / y )  {r(+)y (pz+ P)-+, 

which results after some manipulation. It thus follows that there is a positive 
real root po,  given by 

if IhJ < &r2FEy-l. 

p o  = {&n4Fi y-2 - h2p, 

For other than very special initial conditions an exponentially growing term 
will appear in both X and Y .  The variables V and W are determined from X 
and Y using (10). A little computation shows that at least one of V and W must 
have a similar exponentially growing factor, and consequently so must U .  It 
may be observed that (10) imply that all wavenumbers have the same exponential 
growth rate, but in that part of the spectrum where K ~ T  is large the overall 
amplitude is smaller. 

4. Application to water waves 
The ideas which have been developed in 0 3 will now be applied to the much 

more complicated equations governing cross-waves. The model equation (4) was 
chosen to be representative of the first-order approximation in e to  the equations 
for water waves. However, for the model equation, the instability occurred on 
a time scale of O ( E - ~ ) ,  and, if the same pattern of calculation is to be applicable, 
clearly it will be necessary to show that in the water-wave equations no second- 
order terms in $ may affect the calculations profoundly. This implies that terms 
in both CD and $, correct to second order, must be considered. The number of 
terms involved is alarmingly large, and the result is that almost all of them can 
be neglected. The detailed discussion of all these terms does not seem warranted, 
but some account of the manner in which various terms may be assessed does 
seem indicated. The procedure of 0 3 involved a perturbation expansion in powers 
of E ,  and the same method will be applied for CD. Because CD satisfies a linear set 
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of equations, the crucial surface conditions will yield successively equations of 
the form 

@ott+ @oz = 0, 

@ltt+ @lz  = Ll(@O), 

@,tt + @,z = Ll(@l) + Lz(@o), 

where L, is a linear operator calculable from the first-order basic flow and L, 
is a linear operator derived from second-order terms (not merely the second-order 
terms in the basic flow). Now, any term which appears on the right-hand side in 
the a form like g(x, t )  CDo, where g has a smooth Fourier transform, will appear in 
the subsequent analysis in a convolution integral with CD. Because only a narrow 
wave band will be under consideration (the same resonance conditions as in $ 3  
apply), this will imply that such terms should be considered one stage later in 
the calculation. Thus terms leading to convolution integrals in L2(CDo) and Ll(CD,) 
may be ignored. Thus in L, only those coefficients having singular parts in their 
spectra need be considered. Moreover, they need not be considered unless their 
time-dependent parts, when combined with the exp ( & *it) of CDo, lead to a time 
dependence of the same form as (Do.  Now the leading term for 4 is of the form 
(Havelock 1929) 

q51 = G(x ,  x )  cost + progressive wave train, 

and while there are many terms in 4, the only spatially independent term, with 
a suitable frequency, is that which comes from a pure wave train. However, it 
can be shown that this field does not contribute to the equation for (D. Thus 4, 
contributes nothing to L,. The only terms of significance in L, are the quadratic 
terms in 4, coming from the extended form of ( 2 ) .  For instance, the terms 
+@ozzzq2 and CDozzzqcmust be added to the left-hand side of (2 a), and it is apparent 
that a term such as q2 will contain a term, deriving from the wave train only, 
which must be considered. Now CDo has a smooth continuous spectrum for small 
wavenumbers for the instability under consideration, and hence the equation 
for CDl implies that CDl also has a smooth spectrum, and Ll(CDl) will involve only 
convolutions. Hence CD, need not be calculated. 

From such considerations it follows that, for an instability investigation for 
a mode of the type discussed in Q 3, the appropriate modifications of (2) are 

and 
~ ~ + ~ ~ ~ ~ z z z + ~ 4 ~ z ~ ~ r l ~ C  = Ct+41zCz+@z71z- @ z z r l l z - 4 l z z c + ~ 1  (12a) 

where R, and R, denote terms which do not affect the stability calculations. 
Equations (12) have been arranged so that on the left-hand sides only the 
progressive-wave-train parts of 4, and q, contribute, while onthe right-hand sides 
only convolution integrals with integrands non-singular for small wavenumbers 
arise. A further simplification results if one observes that in the convolution 
integrals, to appear eventually, it is only the values of the coefficients a t  
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k = 0 = k’ that matter. Thus, on the right-hand sides $z may be ignored since 
it will appear as i ( k -  k’) $(k - k‘) .  Similar arguments simplify the calculation of 
terms like &. The above outline should provide a guide as to how the calculations 
proceed. 

In order to obtain the equation corresponding to (4) it is necessary to have the 
first-order solution for the flow field due to a wavemaker. The results due to 
Havelock (1929) are not suited to present purposes, for the parasitic modes are 
calculated in a series of eigenfunctions whereas here they are needed in a Pourier- 
integral representation. A suitable form may be calculated using a Fourier 
cosine transform defined by 

$(x, x ,  t )  cos kxdx = q5e(x, z ,  t )  e-+kxdx, 

where $e denotes the even extension of q5. If one assumes a solution proportional 
to cost, as indicated by the boundary condition on the wavemaker, it  is easy 
to show that its Fourier transform is 

2cost[/’ P(s)k- ls inhk(x-s)ds+coshk(x+p) [coshkp-ksinhk/31-l 
-1 

P(s) [cosh s + k-l sinh ks] ds 

This has poles a t  k = 5 I, where 1 is the unique positive root of 

ltanhlp = 1, 

and the above field neither vanishes at infinity nor satisfies the radiation con- 
dition. The necessary correction can be made by adding a suitable multiple of 
the out-of-phase eigenfunction cos lx sin t cosh Z(z + p). After some calculation it 
may be shown that the progressive wave train is given by 

q5 = Asechl~coshl(z+p)sin(lx-t)  

and 7 = A cos(Zx-t), 
rn 

where A = 4~osh1/3121~+sinh21~~-~ F(s )  coshI(s+p)ds, J :, 
in agreement with the results obtained by Havelock (1929). The continuous 
spectrum is of concern only a t  zero wavenumber, and it may be shown that on 
the surface 

$(O, 0) t )  = 2 P(s)  ds cost = p cos t ,  
/:1 

$Z(O, 0, t )  = p cost, 

$,,(O, 0) t )  = 2P(O) cost = Y COS t ,  

@(o, t )  = - $JO, 0, t )  = ,u sin t ,  

and moreover all the corresponding functions are smooth a t  k = 0. It is of interest 
to note that q(0, t )  is related to the total elevation of the surface, and this provides 
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the appropriate generalization of Garrett's mean quantity. Here, too, the 
properties of q5 relevant to the instability may be related directly to the per- 
formance of the wavemaker, thus maintaining the close connexion with Garrett's 
calculations. 

Furthermore, in evaluating the convolution integrals and the second-order 
terms on the left-hand side of the equations, it suffices to use the leading-order 
expressions for @, so that one may take 

A h A 

Ot'  QOZZ = a2@o @ 021 -16 - 4 0, !z = -6 a,,, = -*%, 
in evaluating the second-order terms. Thus, after some algebra, one is led to 
the equations 

@z + ge2~2a26 = ct + (2n)-le ( v  cos t 1  rn 6t dk' - a2p sin tJIm 6 ..c.) + R, 

&t + p+ (pA2a2-  p A 2 )  6, 

h 

-m 

and 

= - (2n)-l E { i p  sin t /  O0 6t dk' + i p  cos t/:rn 6 c ~ )  + R,. 
--m 

Elimination of then yields the equation 

6t,+{S12+~s2A2(3a2+2z2)}& 

The same scale changes as in $ 3  are introduced and a solution in the form 

@ = V ( K ,  T )  cos i t +  W(K,  T )  sin St 

is sought. The usual argument that 6 should be a bounded function of t then 
yields equations for J' and W :  

A 

(13a) 

where 

and CT = t(Znr)-l[v-p($+2a2)]. 

The calculation proceeds very much as before. Once again the exponentially 
growing solutions are associated with positive roots of 

1 - G - y p q  + @) = 0,  

Ih +&A2(3a2 + 2 P )  I < {++I v -p($ + 2a2) 112. 

and it follows that there is an instability if 

This may be rearranged as 

la tanh a/3- t +&e2A2(3a2 + 2Z2)14 < 2 4 2  + 8a2p - @)-a e2 
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It may be noted that the inclusion of the second-order terms produces only a small 
shift in the frequency a t  which cross-waves are produced, but otherwise has 
no effect on the instability. 

Certain features of the above analysis indicate that it should be possible to 
facilitate the application of similar arguments in other circumstances. Thus the 
location of wavenumbers in the neighbourhood of which such instabilities can 
occur can be obtained solely from the dispersion relation. The effect can oniy 
occur a t  wavenumbers for which the group velocity of the mode describing the 
instability vanishes. This is in line with the physical argument that, if the group 
velocity did not vanish, any energy, being fed slowly into this mode, would be 
radiated away on a much faster time scale and no real growth of the mode would 
be expected. This simplifies the search for modes which could grow. Further, 
in deriving what corresponds to the right-hand side of (13), the coefficients, the 
factor (271-1 apart, may be obtained by a first-order discrete-mode analysis. 
This follows since the results apply if m is simply a &function, but may also be 
verified by examining how the terms arise in the present and Garrett’s develop- 
ment. Thus there is an essential discrepancy between formula (14) above and 
Garrett’s equation (3.18). Both results are consistent with Garrett’s results for 
deep water but not otherwise. The present author has been unable to derive 
Garrett’s equation (3.18) and concludes that it is in error. 

5. Discussion 
There are certain implications of the differences between the present results 

and Garrett’s which are of interest. The first is the result of the smaller order of 
magnitude of the resonant bandwidth and the rate of growth of the cross-waves. 
Both here and in Garrett’s paper the effect of viscous dissipation has been ne- 
glected. The major effect is that  the losses in the boundary layers would cause 
the cross-waves to have a small damping, and in order that the cross-waves oecur 
it is necessary for their growth rate to exceed the decay rate of the cross-wave 
mode. Thus there is a minimum amplitude of excitation before cross-waves will 
appear. This implies for the closed channel, which is not too long, that c must 
exceed a certain critical value, but for the open-ended channel k must exceed 
a critical value which differs from the first although it is of the same order of 
magnitude. Thus the threshold amplitude will be significantly greater for the 
open channel. As for the closed channel, there is a mode of operation of a wave- 
maker which renders the generation of cross-waves less likely. This is achieved 
with an operation such that 

0 

- B  
P(0)  = ($+2a2)j F ( x ) d z ,  (15) 

where in this formula it may be taken that a: satisfies a: tanhap = $. Because of 
the awkward dependence on the parameters, it follows that there would be no 
simple way of achieving this condition over a range of parameters other than 
by making both terms vanish. Conventional wavemakers do not operate with 
both no bulk movement of the fluid and no surface displacement. For a linear 
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wavemaker the above condition reduces to 

1 = 277 db-l tanh nd/b{# + 2a2). 

There is a surprising feature of (14) which calls for comment. Suppose P(z) 
corresponded to the velocity distribution in a travelling wave with the given 
frequency. Then the wavemaker would generate a pure travelling wave and 
there would be no non-propagating field, but (14) implies that there are values 
of a and /i’ for which the cross-wave instability would still exist. Clearly the cross- 
wave field cannot be said to be due solely to the non-propagating field. But it 
has been argued that a pure water-wave train will not generate cross-waves. 
The resolution of this apparent paradox may be illustrated quite simply 
mathematically. The cross-wave field is to be solved subject to a boundary 
condition on the wavemaker which has been taken to be QZ = 0. This has been 
achieved by solving for an even Fourier transform CD which implies using an 
even continuation of 9. However, the travelling-wave part of 9 contains a term 
proportional to sin lx cos t ,  and its even continuation has a Fourier transform 
which has poles at ~f: 1 and is continuous elsewhere; this is in marked contrast with 
the &function behaviour of the Fourier transform of a pure travelling wave. 
In  the presence of the wavemaker, the wave train contributes significantly to 
the cross-wave instability. Physically, the role of the wavemaker may be de- 
scribed as a sink for momentum so that energy can be transferred with momentum 
conservation. This has the clear implication that the amplitude of the wave 
train produced will be affected by the generation of cross-waves rather more 
directly than by changes in the non-propagating field and hence the phases. 

Although the present analysis is concerned only with the initiation of cross- 
waves, it appears reasonable to assume that the manner in which the growing 
disturbance varies along the channel will be at least partially reflected in the 
established cross-wave field. If  this is so, the present analysis offers an explana- 
tion for the decay of the cross-waves down the channel, which is not associated 
with a dissipative mechanism. The disturbanoe, which is growing exponentially 
in time, has a spatial structure the details of which can be determined from the 
instability calculations. As it is not clear that this spatial structure will be 
reflected in the cross-wave field when fully established, the detailed calculations 
will not be presented but the general form may be seen from (13a) and (13b). 
When the instability occurs X and Y have exp (s7) as a factor and so both V and 

(A,s+ B,A)/(s2+A2), 
W have the form 

where A ,  and B, are appropriate constants. The variation with x of the de- 
veloping cross-wave can thus be obtained by an appropriate Fourier inversion 
using also the fact that s is independent of K and A involves K ,  as is implied by 
(13c). Clearly the length scale of the cross-wave field is of O(e-l) and, further- 
more, the decay is exponential for large values of ex. It may be noted that this 
decay along the channel will occur even in the idealized limit of vanishing dis- 
sipation. The result also implies that if this effect, rather than dissipation, con- 
trols the variation of cross-wave pattern along the channel then the stronger the 
wavemaker action the less the extent of the cross-waves. 

A 
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One of the difficulties associated with the understanding of cross-waves is 
the mechanism whereby energy supplied by the wavemaker is subsequently to  
be found in the cross-wave mode down the channel, since a pure cross-wave 
mode does not propagate energy along the channel. The form of the calculations 
suggests that the energy transfer could take place in the long-wave part of the 
spectrum and thence into the cross-waves. This is not in conflict with Garrett’s 
argument that the energy balance for the whole system requires that the energy 
in the cross-waves be supplied by the wavemaker. However, in the absence of 
a method of calculating the field near the wavemaker when cross-waves are 
established, there appears to be no way to settle the manner in which the wave- 
maker works against the stresses associated with the presence of cross-waves. 

The author wishes to express his gratitude for the stimulating hospitality of 
the Fluid Mechanics Research Institute, University of Essex, and for support 
under an S.R.C. grant. 
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